Assignment 1

We fix throughout a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ on which we are given a filtration \mathbb{F} .

On hitting times of closed and open sets

Let E be a finite-dimensional Euclidean space, and let X be an E-valued and \mathbb{F} -adapted process.

- 1) Prove that if $G \subset E$ is open and X has right- or left-continuous trajectories, then $\rho_{X,G}$ and $\tau_{X,G}$ are \mathbb{F} -optional times (see Definition 4.3.3 in the lecture notes)
- 2) Show that if $G \subset E$ is closed and X has continuous trajectories, then $\tau_{X,G}$ is an \mathbb{F} -stopping time.
- 3) Show that if $G \subset E$ is closed, and X is càdlàg then $\theta_{X,G}$ is an \mathbb{F} -stopping time (see Definition 4.3.5 in the lecture notes).

Properties of stopping times

- 1) Show that if τ is an \mathbb{F} -optional time, and $\theta \in (0, +\infty)$, then $\tau + \theta$ is an \mathbb{F} -stopping time.
- 2) Show that if τ and ρ are \mathbb{F} -stopping times, so are $\tau \wedge \rho$, $\tau \vee \rho$ and $\tau + \rho$.
- 3) Show that if τ and ρ are \mathbb{F} -optional times, then $\tau + \rho$ is also an \mathbb{F} -optional time. It is moreover an \mathbb{F} -stopping time if either τ and ρ are positive, or if $\tau > 0$ and τ is an \mathbb{F} -stopping time.
- 4) Let $(\tau_n)_{n\in\mathbb{N}}$ be a sequence of \mathbb{F} -optional times. Show that the following four random times are \mathbb{F} -optional times

$$\sup_{n\in\mathbb{N}}\tau_n,\ \inf_{n\in\mathbb{N}}\tau_n,\ \underset{n\to+\infty}{\overline{\lim}}\tau_n,\ \underset{n\to+\infty}{\underline{\lim}}\tau_n.$$

Furthermore, if the $(\tau_n)_{n\in\mathbb{N}}$ are actually \mathbb{F} -stopping times, show that $\sup_{n\in\mathbb{N}} \tau_n$ is an \mathbb{F} -stopping time too.

Hitting times and completeness of \mathbb{F}

Let X be an \mathbb{R} -valued and right-continuous process. The goal of this exercise is to show that for any $M \in \mathbb{R}$, the hitting time $\tau_{X,[M,+\infty)}$ is an \mathbb{F} -stopping time when \mathbb{F} is \mathbb{P} -complete.

1) Given any \mathbb{F} -stopping time σ which is below $\tau_{X,[M,+\infty)}$, define

$$\sigma^+ := \inf \left\{ t \ge \sigma \colon \sup_{\sigma \le u \le t} X_u \ge M \right\}.$$

Show that $\sigma \leq \sigma^+ \leq \tau_{X,[M,+\infty)}$, that σ^+ is still an \mathbb{F} -stopping time, and that σ^+ is strictly greater than σ whenever $\sigma < \tau_{X,[M,+\infty)}$.

2) Let $\mathcal{T}_{0,\tau_{X,[M,+\infty)}}$ consist of the set of all \mathbb{F} -stopping times σ satisfying $\sigma \leq \tau_{X,[M,+\infty)}$, and define

$$\sigma_{\infty} := \operatorname{essup}^{\mathbb{P}} \mathcal{T}_{0,\tau_{X,[M,+\infty)}}.$$

Prove that the family $\mathcal{T}_{0,\tau_{X,[M,+\infty)}}$ is upward directed and deduce that there exists a sequence $(\tau_n)_{n\in\mathbb{N}}$ valued in $\mathcal{T}_{0,\tau_{X,[M,+\infty)}}$ such that

$$\sigma_{\infty} = \sup_{n \in \mathbb{N}} \tau_n.$$

- 3) Show that $\sigma_{\infty} \in \mathcal{T}_{0,\tau_{X,[M,+\infty)}}$ and that $\sigma_{\infty}^+ = \sigma_{\infty}$, \mathbb{P} -a.s.
- 4) Deduce that $\sigma_{\infty} = \tau_{X,[M,+\infty)}$ and conclude.